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Steady and oscillating axisymmetric laminar flows are determined by a finite- 
difference solution of the vorticity and continuity equations for an incompressible 
fluid contained in a straight concertina-shaped tube far from its ends. I n  steady flow 
the size of the wall corrugations is varied as well as the Reynolds number of the flow. 
I n  unsteady flow one tube geometry is studied, and the parameters varied are the 
Reynolds number, the ratio of the mean volume flow rate to  its amplitude, and the 
frequency of oscillation. The analysis produces streamlines, particle paths and the 
pressure difference across a length of the tube. The resistance to the flow is determined 
in terms of an equivalent cylindrical tube diameter. 

In  steady flow the onset of flow separation and the growth of the separated region 
of flow is determined. The equivalent diameter is found to be principally a function 
of the product of Reynolds number and the non-dimensional pressure difference. This 
product depends on the height of the wall corrugations and less strongly on Reynolds 
number and the length of the corrugations. Resistance increases with increasing 
height of the corrugations. Comparison is made with other computational and 
experimental values of the pressure difference. 

I n  unsteady flow the mean velocity to amplitude ratio has little effect except on 
the particle paths. The flow pattern is found to be governed by the Stokes number 
(radius x (2n/(kinematic viscosity x period))&) and the Reynolds number. There is a 
region of quasi-steady flow a t  the time of zero acceleration a t  maximum flow, but 
unsteady flow in between. The mixing produced by radial convection is restricted to 
the outer parts of the tube where the wall is corrugated. I n  oscillating flow the 
resistance relative to  a cylindrical tube decreases as frequency and Reynolds number 
increase. 

I n  the medical application of the work the concern is whether sustained stagnant 
regions occur in the corrugations and whether there is a large change in resistance 
relative to  a cylindrical tube. This part of the investigation was made with an arterial 
waveform which contained six harmonics. It is found that there are no regions of 
stagnant fluid in the range of parameters considered. The difference between the 
variation with the flow parameters of the resistance of the corrugated tube and of 
a cylindrical tube was found not to be large. 

1. Introduction 
Interest in the subject of this paper has developed from a practical problem 

concerned with blood flow in arterial prostheses. The steady and oscillating flows in 
corrugated tubes are interesting from a purely fluid-mechanical point of view and 
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we present the work in this way. The medical applications will be discussed a t  the 
end in $7.  This seems reasonable because the complicated nature of the medical 
problem involves as much biochemistry as fluid mechanics. The present work is a 
contribution to the practical problem, which will require further contributions from 
other disciplines before a final judgement can be made. The main purpose of this work 
is to examine the effect of the corrugations on the flow structure, that  is, on flow 
separation and vortex formation. We will determine the effective skin friction by a 
derivation of the equivalent cylindrical tube which gives the same volume flow rate 
for the same pressure difference as the corrugated tube. 

The determination of flow separation in steady flow is straightforward, but there 
is no precise definition of separation in unsteady flow. I n  the present work on 
oscillating flow some separation occurs during times in which the flow in the 
corrugation is slowly changing and hence quasi-steady. In these cases separation is 
clearly shown. When the flow is unsteady, as a t  times of approximately zero volume 
flow rate, separation would best be viewed in terms of particle paths because 
separation must mean that particles are moving from the wall region into the flow. 
Particle paths from all mesh points in the corrugation are followed in the work of 
$7 ,  where i t  is seen that we may describe the flow as having separated in the 
corrugations. 

The foundations of the analysis of the flow in the region of intersection between 
two walls has been laid by Moffatt (1964) and Smith (1976). We will consider our 
results on secondary separation a t  the apex of the corrugation in terms of Moffatt’s 
theory. The work of Smith, though not directly comparable with the present work, 
shows that two-dimensional and axisymmetric flows have essentially the same 
characteristics and so comparison with the results of Sobey (1980) is reasonable. 

The work and some of the results are similar to  those of Sobey (1980), who treated 
the two-dimensional problem of large sinusoidal and semicircular corrugations 
bordering a narrow central channel. We consider an amplitude of corrugation which 
is relatively small compared with the overall diameter. There is some overlapping 
of the ranges of parameters studied and a comparison of results is possible. 

There has been interest in the friction factor of steady laminar flow in corrugated 
tubes of various geometries as models of the flow through packed beds and porous 
rock. Reference will be made to the work of Batra, Fulford & Dullien (1970) and of 
Azzam & Dullien (1977). There are precise and well-documented experimental and 
numerical determinations of friction factor for steady flow in tubes with sinusoidal 
axial variation of radius by Deiber & Schowalter (1979). Specific comparison will be 
made with the results of this work. Computation of oscillating flow in a tube of 
varying radius has been made by Mirolyubov (1979). This work is similar to the 
present study but is not directly comparable. 

A cross-section of the straight tube is shown in figure 1, where A and L are defined 
as the height and length of the corrugations of the wall of the tube of maximum 
diameter D. Also shown are the coordinates used later to refer to particle positions. 
We will refer to the intersection of the walls of the corrugation a t  the maximum radius 
as the apex of the corrugation and call the intersection at minimum radius the corner. 
Streamlines and particle paths are determined with a computational mesh numbered 
from 0 to  40 in the radial direction and from 0 to 16 in the axial direction across one 
corrugation ( M + N  = 40, N = 8 in figure 2).  The problem is simplified for computa- 
tional purposes by assuming that the flow is Newtonian, incompressible, laminar and 
axisymmetric. The walls are rigid and the flow in one corrugation is studied. It is 
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FIGURE 1. Corrugated-tube geometry and coordinates for particle positions in unsteady flow. 

assumed that this is far from the tube entrance so that conditions a t  each end of the 
corrugation are identical. The fluid velocity is of the form 

271t 
T 

w = m+zi,cos--, 

where t is the time and T is the period of the oscillation. Quantities are non- 
dimensionalized with the maximum inside diameter D and with the cross-sectional- 
mean velocity amplitude W a t  that  section. I n  steady flow where @ is zero, w, the 
mean velocity a t  the section of diameter D ,  is used as the characteristic velocity. The 
geometrical non-dimensional parameters are AID and LID. Dimensional analysis 
shows that the non-dimensional parameters of the flow are three of the following : 

the velocity ratio E = w/W, 
Re = WD/v ,  the Reynolds number 

the Stokes number 01 = 0.5D(2n/vT)h, 

and the Strouhal number St = D/ W T ,  

where Y is the kinematic viscosity coefficient of the fluid. The velocity W is Win steady 
flow, and in oscillating flow W is put equal to W even when the oscillation is about 
a non-zero mean. The overall characteristics of an oscillating flow will be found to 
depend on a and Re. St principally determines particle paths outside the corrugations. 
In  steady flow the frequency parameters are absent and Re is the significant 
parameter. Capital letters are used to refer to cross-sectional-mean velocities and 
small letters to denote velocities which are functions of radial distance. 

2. The numerical method 
The computational procedure used to solve this problem is well known and has been 

widely used in recent years. The present computer program has been used for other 
work, on the point of submission for publication by G. Y.  Buss, on oscillating flows 
in tubes of varying area and agreement obtained with analysis and experiments to  
within 1 or 2 %  for velocity magnitude. The discrepancy increases with Reynolds 
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number. The Navier-Stokes equations are transposed into the equations of vorticity 
and continuity, with vorticity and stream function as variables : 

The only non-zero component of vorticity is 

au aw 
7 = z-s' (4) 

The Stokes stream function $ is related to the r- and z-components of velocity u and 

A central finite-difference scheme is used with a two-time-level Dufort-Frankel 
substitution for the time-dependent terms as described by Roache (1972). The 
equations are the same as those used by Gerrard (1971) and Butler (1979), who dealt 
with axisymmetric-tube problems. Different facets of treatments similar to the 
present one are described by Pearson (1965), Macagno & Hung (1967), Williams 
(1969), Gillani & Swanson (1976) and Sobey (1980). The finite-difference forms of ( 2 )  
and ( 3 )  give the updated values of the vorticity and stream function as 

At 2At(g2+ Y/fy 1 +-+ ( Rer2 Reg2h2 

-5 9h2 ( $ i , j + l  - $ i , j - J  -92hZr7t31}/2(92 + h2).  ( 7 )  

The non-dimensional mesh lengths in the r- and z-directions are g and h respectively. 
The subscripts i , j  refer to  mesh points in the z- and r-directions and the superscripts 
refer to the number of the time step. Where the superscript is omitted it is k.  Thus 
the vorticity equation gives T~~ at time ( k +  1 )  At, where At is the time step, in terms 
of 7 i , j  a t  time ( k -  1) At and $ and 7 values a t  adjacent mesh points a t  time kAt. 
The solution of the finite-difference equations requires some initial and boundary 
conditions to be assigned and their computational stability must be ensured by using 
the right time step and mesh lengths. 

2.1. Initial and boundary conditions 

Initial values of 7 and $ are needed a t  all mesh points. In  some preliminary 
computations flows starting from rest were considered. This was found to produce 
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some numerical instabilities due to the large gradients occurring near boundaries and 
the computing time was very long. In  all studies presented here a Poiseuille profile 
a t  each cross-section was initially assumed for r] and @. This led to  a more rapid 
convergence and reduced computing time considerably. 

The boundary conditions imposed on (6) and (7) are 

on the tube axis; $ = 0 
and on the boundary walls 

-0.125 for steady flow (8) 

(9) 
@ = @ B =  { -0.125 (c+cos$) for oscillatory flow. 

The boundary conditions at the entrance and exit of one wavelength of the 
corrugation are given by the periodic nature of the wall and the assumption that the 
tube is in effect infinitely long. Hence 

Since the flow is axisymmetric r ]  = 0 on the tube axis. Values of 7 on the boundary 
wall are determined by extrapolation from known values in the flow. This is done 
by expanding the stream function and vorticity a t  the wall in Taylor series and 
applying the conditions of no slip and zero normal velocity at the wall. Figure 2 shows 
the mean used for the computation and also the (p,rn)-coordinate system used for 
the extrapolation. p is parallel and rn normal to  the wall. The wall makes an angle 
8 with the tube axis. The point on the sloping wall a t  which the value of r] is required 
is B, and B + 1 is the point where the normal to  the wall at B crosses the next gridline. 
The distance from B to B + 1 is k = g/cos 8.  Applying a Taylor-series expansion a t  
B for @ and r] gives 

The boundary conditions at  B are 

(g)B = 0 (no-slip condition), 

r$)B = 0 (no flow through the wall), 

rg),=O ( n =  1,2,3 ,... ), 

(@ constant along the wall). 

The derivatives of $ can be evaluated from the continuity equation (3), which after 
change of axes becomes 



134 

'1 
1 

0 

C .  N .  Savvides and J .  H .  Gerrard 

- z h +  

- ___-  

'1 
1 

0 

The applic 
respect to 

- z h +  

- ___-  

with 

k2 k3 2+c0s20 
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(15) 

At the corners of the corrugations 8 is assumed to  be zero. I n  this zero-inclination 
condition (15) reduces to  the equation derived by Gerrard (1971) for a cylindrical tube. 
The values a t  B+ 1 are obtained by linear interpolation. 

2 .2 .  The mesh size and time step 

The finite-difference form of the equations must satisfy certain requirements in order 
to reproduce faithfully a true solution of the continuous equations. The choice of time 
step and mesh length is governed by considerations of accuracy, computational 
stability and compatibility with the boundary data. The last requirement implies that 
At must be small compared with the timescale over which the boundary values are 
changing. This means that the mesh length Ax divided by the time step At must be 
greater than the rate at which vorticity diffuses away from its origin a t  the wall. 

The relations involving mesh lengths and time step depend on the particular 
problem and must be found by trial and error. I n  the steady-flow case two expressions 
for At were available : 

1 h2g2 Re 
15 h2+g2 

At > -~ 

and At < &h2 Re. (17) 

The expression giving the smaller value of At was used. In the oscillating-flow case 

u2h2T 
1571 

At < - 
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was used, where a is the Stokes number and T the period of the oscillation. Similar 
limits, obtained from program-stability considerations, were used by Williams (1969), 
who obtained At < Qh2 Re ,  and by Thoman & Szewczyk (1964). 

The non-dimensional mesh lengths varied between 0.01 and 0.032 depending on 
LID and AID, and were computed from 

L A 1 
9 = - =  h = - -  

2ND’ ND 2 ( M + N ) ’  

where M and N are the number of grid points. There are 2N grid points in the axial 
direction and M + I grid points in the radial direction, with I = 0 , 1 , 2 ,  . . . , N as shown 
in figure 2 .  Mesh size was varied to obtain an indication of the accuracy in steady 
flow. Changing (M, N )  from (20,5) to (32 , s )  to (48,12) produced maximum changes 
in 11. of 0.2 % and 0.16 yo of the wall value of 11.. The non-dimensional pressure drop 
over the corrugation (p* of $4)  changed by 2% and 0.5%. Particle paths were 
determined by a first-order difference scheme, but with At as small as indicated by 
(16)-( 18) this is not expected to  produce a noticeable error. 

When the radial meshlines pass through the apexes of the corrugation the latter 
are points of discontinuous changes of slope. I n  some programs the apexes were made 
to fall midway between two radial meshlines. In  this case the corners were rounded. 
Both types of mesh disposition have been used and only slight differences observed 
in particular in the determination of the Reynolds number for the onset of separation. 
This will be referred to later in connection with figure 9. 

3. Computation of the steady flow 
For steady flow the geometrical parameters and the Reynolds number are varied 

over ranges which demonstrate the variation of the separated region of flow and which 
include the range of practical interest for by-pass graft prostheses. One of each of 
the three parameters LID, AID and Re is varied a t  a time. 

The variation with changing LID is shown in figures 3 and 4. I n  these diagrams 
of computed streamlines and following similar figures for steady flow, lines of specific 
constant values of the stream function are drawn as indicated in the caption of figure 
3. The flow is from left to right. I n  those figures in which there are closed streamlines 
the flow rotation is counterclockwise. The lines along which the stream function has 
the boundary value of -0.125 are indicated by + symbols. These are the separation- 
reattachment streamlines. These + symbols are separated by one mesh length in the 
axial direction. The separation and reattachment positions cannot be determined to 
better than half of a mesh length and so are not indicated. At a large-enough value 
of LID the flow does not separate and the streamlines follow the wall shape. As LID 
decreases below some critical value the flow separates a t  the apex of the corrugation 
as in figure 7 a t  AID = 0.1. We shall refer to the point of maximum internal diameter 
of the tube as the apex of the corrugation and call the point of minimum internal 
diameter the corner. After its inception a t  the apex the separation region then grows 
as LID decreases, eventually filling most of the corrugation. This is to be expected 
since the adverse pressure gradient is larger when the angle of inclination of the wall 
is larger. As will be seen the separation is more pronounced at higher Reynolds 
number. The critical LID for the flow to separate increases as Re and AID increase. 
This can be seen from figure 4, where SSILA is shown as a function of LID for various 
Re ; 2S/LA is the ratio of the area S of the cross-section of the separated region to 
the triangular area of cross-section of the corrugation. It is seen that for Re = 100 
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FIGURE 3. Streamlines of steady flow at Re = 250, A f D = 0.1. Values of - ~ in steady-flow 
streamline figures are 0, 0.02, 0.05, 0.07, 0.09, 0.10, 0.11, 0.12, 0.124, 0.125. 
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FIGURE 4. Ratio of separated area to corrugation area as a function of LID for various 
Reynolds numbers and AID = 0.1: v, Re = 100; 0, 250; 0 ,  500; A, 750; 0,  1000. 
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Re 100 250 500 

750 1000 

FIGURE 5. Streamlines of steady flow at LID = 0.5, A I D  = 0.167. Values of -# 
extra to figure 3 are 0.126 and 0.127. 

and AID = 0.1 the lowest LID for which separation does not occur is about 0.55, 
and for Re = 250 and AID = 0.1 it  is about 1.06. 

The effect of the Reynolds number on the flow is considered next for a particular 
AID and LID. Figure 5 shows the streamlines for LID = 0.5 and AID = 0.167 as 
the Reynolds number increases from 100 to 1000. Separation first occurs at a small 
Reynolds number, as we see from figure 6. The separated region grows with increasing 
Reynolds number, and the vortex formed spreads, shifting its centre downstream. 
This shift is more pronounced at larger values of AID. Curves showing the variation 
of separation area with Re a t  constant LID and AID are plotted in figure 6. 
Extrapolation of these curves will give the maximum Re, Re,, for which there is no 
separation. For this reason exponential curves of the form 

S’= S’,(l-eexp(-k(Re-Re,))) 

are drawn to pass through the points as well as possible. S‘ is written for 2S/LA, 8; 
is the fractional separated area at infinite Reynolds number. It is seen that the curves 
fit the points reasonably well. The extrapolations indicate that for two of the six cases 
separation occurs at zero Reynolds number. These two geometries have walls making 
the largest angles to the axis. This is in agreement with the analysis of Moffatt (1964). 
The interpretation of Moffatt’s work in this context is that when there is a 
significantly sized region a t  the apex in which the local Reynolds number is small 
an eddy will be seen. This will occur a t  low Reynolds number and large inclination 
of the wall to the tube axis. Moffatt’s analysis also explains the absence of eddies and 
thus of separation a t  the corner of the corrugation. 

Figure 7 shows the effect of varying AID at constant values of Re and LID. Extra 
streamlines are included to show the circulation within the separated region. If, 
following Sobey (1980), we relate the strength of the vortex to the difference between 
the wall value of the stream function and the minimum stream-function value in the 
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2SILA 

FIGURE 6. Ratio of separated area to corrugation area as a function of Reynolds number; computed 
points and exponential curves. 

Symbol LID AID 
1 .o 0.1 

+ 0.5 0.1 
0 0.4 0.1 
0 0.2 0.1 
V 0.5 0.167 
A 0.4 0.167 

flow, we see that the vortex strength increases as AID increases. We have plotted 
our minimum stream-function values against Re for various AID and seen that the 
curves are of the same shape as Sobey’s except that they become flatter a t  high Re. 
The minimum stream function corresponds to the reverse flow in the separation 
region, which is not simply relatable to the vortex strength or circulation. Figure 8 
shows an alternative, but still inexact, representation of vortex strength. The 
circulation of the separated region is the line integral of the velocity along the 
separation streamline. As S grows larger the separated streamline moves into regions 
of higher speed as well as getting longer. BSILA is related to the length of this 
bounding line. Figure 8 clearly shows that the vortex strength increases rapidly with 
AID at  all Re, and also increases with Re at fixed AID up to Re approaching 1000, 
where the variation is much diminished. 

We have determined for the flows in figure 6 the smallest Re for which separation 
occurs. A plot of the vorticity a t  the apex of the corrugation as a function of the 
parameters gives the same information. Wall vorticity a t  the apex, where separation 
first occurs, changes sign when separation takes place. Several examples of these 
curves are shown in figure 9, from which secondary and also tertiary separation can 
be seen to take place. The abscissa chosen for figure 9 is the included angle at the 
apex. We see that as this angle decreases the curves for different parameter values 
become (approximately) dependent only on this angle. This is as we would expect 
from the theory of Moffatt (1964). The local Reynolds numbers in this region are small, 
The secondary and tertiary separations occur within one radial mesh length of the 
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A ID 0.1 0.15 0.167 

0.2 0.25 
FIGURE 7. Streamlines of steady flow at LID = 0.5, Re = 100. Values of - - ~  as in figure 5. 

apex and the Reynolds numbers based on this mesh length and the local velocity for 
all the curves of figure 9 lie between 7 x low3 and 9 x and so we would expect 
Moffatt’s theory to  apply. All the other results presented here were found to be 
functions of L and A separately and not of AIL. The three points plotted as S = 0 
on figure 8 were obtained from figure 9. The onset of separation at the apex is sensitive 
to the disposition of the computational mesh as described in 52.2. The differences 
produced are not large and are in the direction to be expected from the fact that  when 
the apex lies between two mesh points i t  is effectively more rounded than when the 
apex is a mesh point. 

The main characteristics of the flows computed are the same as those found by 
Sobey, as one would have expected. The geometry studied by Sobey was two- 
dimensional and his corrugations were sinusoidal and semicircular regions bordering 
a relatively narrow central channel, thus being comparable to larger values of AID 
than considered here. The vortex produced by the separation shifts downstream as 
Reynolds number increases and secondary vortices are formed in deep corrugations. 
The vortex grows to fill the corrugation a t  higher Reynolds numbers, and here we 
have found that this also occurs as AID increases a t  constant Reynolds number. I n  
the present work the way in which the separated region depends on the parameters 
of the problem has been treated in greater detail. The wall vorticity a t  the corrugation 
apex shows the same type of variation in the two-dimensional and in the present work, 
though the numerical values are not the same. It is noteworthy that separation 
commences a t  the apex whether this is sharp or rounded. 

4. The equivalent cylindrical tube in steady flow 
The aim of the work is to predict blood flow in arterial bypass grafts, and thus 

the results obtained for steady flow with separation are irrelevant to  the application. 
It does, however, serve as an introduction to the oscillating-flow case to consider the 
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FIGURE 8. Ratio of separated area to corrugation area as a function of AID.  
Symbol LID Re 
0 0.5 100 
+ 0.5 250 
0 0.5 500 
D 0.4 750 
e 0.5 1000 
A 0.4 1000 

pressure difference across a corrugation and to determine the equivalent cylindrical 
tube. The cylindrical tube is equivalent when the pressure difference across i t  and 
the volume flow rate through i t  are both the same as in the corrugated tube. We define 
the non-dimensional pressure difference as 

where Ap is the pressure difference between the ends of the corrugation and is 
computed by rearranging and integrating the axial equation of motion. The equation 
to be evaluated is 

where zj-? = u2+w2. To verify that this can be derived from the equation of motion, 
we differentiate (21) with respect to z ,  put r,~ = au/az-aw/ar and use the continuity 
equation 

differentiated with respect to z .  This gives 
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+ R e =  100 

X Re = 250 
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FIGURE 9. Vorticity at the apex of the corrugation as a function of the angle at the apex : 
LID = 0.4: m, Re = 100; A, 250. LID = 0.5: +, Re = 100; x ,  250; 0 ,  500. 

The left-hand side of (21) is Aprj, since v is the same at the entrance and exit. 
Integration over the cross section gives 

which is evaluated numerically. 
The non-dimensional pressure difference p* is proportional to the friction factor 

which is widely used in describing the pressure drop in pipe flow. There are three 
contributions top* : the corrugated tube has a bigger surface area than the equivalent 
cylindrical tube; the velocity gradient at  the wall is different from that in cylindrical 
tube flow ; the inclination of the wall implies that there is a component of the normal 
pressure force in the axial direction. For laminar flow in a cylindrical tube Rep* is 
constant because the volume flow rate Q is proportional to D4 AplL. In a corrugated 
tube at Re-values small enough for inertia effects to be small, Rep* is still independent 
of Re but is increased above the cylindrical tube value of 32. This may be viewed 
as replacing D by D,, the equivalent cylindrical tube diameter, and since D, is less 
than D it  follows that Rep* is increased. The increase is due to higher velocity 
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gradients at the walls, which have a larger surface area. There is also an asymmetry 
between the flows in the expanding and contracting parts of the corrugation. This 
asymmetry is visible just after separation in figure 7 .  Once separation has taken place 
the size of the separation region is a function of Re, and Rep* becomes a function 
of Reynolds number - but this we shall see is not a strong effect, presumably because 
the three contributions to p* do not all act in the same direction. It transpires that  
for our range of the parameters the pressure gradient is only weakly dependent on 
LID and depends principally on Re and AID;  graphs of Re Ap against LID lie very 
close to  straight lines passing through the origin with slopes depending on AID. 

In order to  determine the diameter of the equivalent cylindrical tube we write (20) 
as 

Ap n2D5 
LQz l6p 

p* = -- = kD5, 

where k is a constant from the definition of the equivalent cylindrical tube. In  the 
equivalent cylindrical tube k must have the same value, and so 

where suffix e denotes the value for the equivalent cylindrical tube for which 
p,* = 32/Ree. Also Re, = DRe/D,, because Re cc 1 / D  a t  constant Q. We thus arrive 
a t  

I n  figure 10 we plot Rep* as a function of AID for various Re and LID values. 
The curve drawn has the equation 

d - _  2 - 5+0.05.  

where d = D-2A is the minimum diameter of the corrugated tube. This curve is a 
fair representation of the computed results, except a t  small values of AID, where 
it does not pass through the cylindrical-tube value of 32 a t  AID = 0. From figure 
10 we see that for each value of AID the tube resistance and Rep* increase as 
Re increases. Resistance increases as LID decreases, as one would expect with a 
rougher wall, but in our range of values the resistance variation is slight. Large values 
of LID will be referred to shortly. From figure 10 and (22) one can determine the 
pressure gradient and equivalent uylindrical-tube diameter corresponding to any 
particular geometry and Reynolds number within the range covered here. For small 
corrugations the resistance of the tube in steady flow is such that i t  is equivalent to 
a cylindrical tube of diameter equal to  the maximum diameter of the corrugated tube. 
As AID increases, the diameter of the equivalent cylindrical tube approaches the 
inside diameter of the corrugated tube. For a fixed maximum diameter D of the 
corrugations the resistance increases as AID increases. Though the range of equivalent 
diameter is not very great, the fourth-power relationship in (23) results in the 10-fold 
increase in resistance shown in figure 10. 

There are several published papers on the computation of steady flow in periodically 
constricted tubes. Most of this work concerns the friction factor as a function of 
Reynolds number. There is to our knowledge only one paper giving experimental 
results with sufficient documentation and accurate definition of wall shape with which 
we can compare our computations, and this is the work of Deiber & Schowalter (1979). 
They have made measurements and have computed the friction factor of a tube of 
mean radius a and with sinusoidal radius variation of amplitude c.  Our p* and their 



Flow through a corrugated tube 143 

A 
D 
- 

100 200 300 
Rep* 

FIQURE 10. Variation of the product of Reynolds number and non-dimensional pressure gradient 
with A f D. The curve plotted is (24). 

Symbol Re LID 
0 100 0.5 
0 250 0.4 
A 250 1 .o 
0 1000 0.4 

friction factor f are related by Rep* = 2fN( 1 + where N is Deiber & Schowalter’s 
Reynolds number; Re = N / (  1 +€/a) .  We compare results for the same values of the 
wavelength of the sinusoidal corrugation, which we equate to L ,  and we equate twice 
the amplitude 2s with our length A.  All the computations and experiments of Deiber 
& Schowalter are for much larger LID values than the ones that are relevant to the 
present application, and so for the comparison we have made a check at LID = 2.41 
and A / D  = 0.231 corresponding to their figure 5 .  This figure is a log-log plot of 
friction factor versus Re, on which in viscous-dominated flow at  low Reynolds number 
the results of computation and experiment lie on a straight line of slope - 1  
corresponding to Rep* = constant as in Poiseuille flow. Figure 11 is the same figure 
reproduced in our equivalent notation. The straight line of Deiber & Schowalter 
corresponds to Rep* = 145. The accuracy of this value is about +_3% owing to 
reading values from their graph. Their computations and experiments depart from 
this line at Re x 60, which they say is where separation begins. It is surprising that 
curvature is not apparent at lower Reynolds numbers, because the streamlines show 
asymmetry before separation in the way of the pattern at  AID = 0.1 in figure 7 .  The 
effect of this asymmetry must be small. 

Our computations of p* were made at  Re = 10, 50, I00 and 200, and the resulting 
values of Rep* were 142.5, 151.0, 167.8 and 188 respectively. Our point at Re = 10 
lies on the Deiber & Schowalter curve. Our other points lie on a straight line on the 
log-log plot to within 0.7 yo, and this line intersects the Rep* = 145 line a t  Re = 40, 
which is about where separation begins (separation has just begun at  the apex at 
Re = 50). These points at Re = 50-200 coincide with the experimental values of 
Deiber & Schowalter and lie twice as far from the Rep* = 145 line as do their 
computed results. 
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FIGURE 11. Graph equivalent to  figure 5 of Deiber & Schowalter (1979). -, Deiber & Schowalter 
computation; ---, Deiber & Schowalter experiment (wall-radius variation sinusoidal); - - - + - - - -, 
present computation ; S,  Deiber & Schowalter, separation inception ; S', present results, separation 
inception. 

These observations do not serve as a check of accuracy of computation because 
of the difference in geometry. As was stated in $ 2 ,  our results have been independently 
checked with analysis and experiment. The agreement with Deiber & Schowalter a t  
low Reynolds number means that the increased resistance due to the sharp corner 
and apex of our triangular wall profile is balanced by the increased resistance due 
to a larger wall inclination midway between the corner and apex in the case of the 
sinusoidal wall profile. The larger departure of our results from the Rep* = 145 line 
a t  higher Reynolds numbers is presumably also due to the effects of the difference 
in geometry ; that  our computations agree with the Deiber & Schowalter experiments 
is no doubt fortuitous. I n  our case the departure from the straight line of slope - 1 
(Rep* = constant) amounts a t  Re = 200 to  26 % ofp*. At smaller values of A I D  and 
LID the effect of Reynolds number in producing curvature in the relationship 
between p* and Re is much less, as is also seen in the computations of Batra et al. 
(1970) and of Azzam & Dullien (1977). 

Some computations have been made a t  Reynolds numbers less than 100 a t  
A I D  = 0.167 and smaller values. The results do not show the large increase in Rep* 
with Re which Deiber & Schowalter find from computation at AID = 0.375 in their 
figure 2 .  This is presumably an effect of the narrowness of the central core of the flow 
when the constriction is so severe. 
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5. Computation of the oscillating flow 
We turn now to the more practical but more complicated unsteady flow in a 

corrugated tube. The oscillating flow is characterized by five non-dimensional 
parameters: the two geometrical parameters LID and AID and the flow parameters, 
Reynolds number Re, the Stokes number a and the velocity ratio E .  The particle paths 
depend most strongly upon E and the Strouhal number X t  = D /  WT = 2a2/x Re. 
Since the number of parameters involved in this problem is so large we have restricted 
the computations to one particular tube geometry, AID = 0.1 and L / D  = 0.2, which 
closely resembles the arterial prostheses in which we are interested. 

Before considering more complicated waveforms we will discuss flows that oscillate 
sinusoidally. We firstly consider the case where E = 1, in which the boundary value 
of the stream function is given by (9). The flow is unidirectional and has zero value 
at  the middle of the cycle. The structure of the flow cycle is presented by drawing 
the instantaneous streamlines a t  various times in the flow cycle. Figure 12 shows a 
sequence of calculated streamlines a t  Re = 300, a = 10. The figures are produced by 
a computer contouring procedure by interpolation between the values of stream 
function a t  the mesh points. The coarseness of the mesh shows up in some regions 
where flow details are of the same size as the mesh length; the tube corrugation is 
8 mesh lengths in the radial direction and 16 in the axial direction. The streamlines 
are not constrained to be parallel to the axis at their ends, and so in some cases appear 
to change direction abruptly a t  the entrance and exit. The streamlines on which the 
stream function has the wall value are marked by plus signs. As in steady flow their 
intersection with the wall is indeterminate to within half a mesh length and so this 
is not included. The values of stream function chosen for the streamlines shown are 
different on each diagram and so are not specified. 

The maximum flow occurs a t  t /T  = 0, which is the same as t / T  = 1. At this phase 
in figure 12 there is a separation region of the same shape as that in steady flow at 
the same Reynolds number, but of larger size. As the volume flow rate decreases, the 
recirculating region grows in size, the separated region bulges to more than fill the 
corrugation and the flow becomes asymmetrical. The centre of the recirculating 
streamlines moves downstream up to t /T  = 0.35 as it moves out of the corrugation. 
As the volume flow rate approaches zero at  t /T  = 0.5 this centre moves back and 
eventually, before disappearing a t  about midradius at t /T  between 0.55 and 0.6, the 
recirculating streamlines cross the boundary into the upstream corrugation. The flow 
is at its most complicated in the low-velocity phase around t /T  = 0.5. By t / T  = 0.65 
the flow becomes unidirectional and has the appearance of steady flow at low 
Reynolds number. It is noteworthy, however, that, as we saw in figure 6, the geometry 
in which we are studying oscillating flow is the one in which separation occurs a t  zero 
Reynolds number in steady flow. As the flow rate increases, the velocity remains 
unidirectional, except in the corrugation. The instantaneous streamlines with the wall 
value of the stream function are marked on the figures by plus signs. These represent 
separation streamlines when they spring from the wall and only when they are 
stationary or slowly changing. If a was small the flow would be quasi-steady through- 
out the cycle, but a is not small here. During the time interval from t / T  = 0.75 
through 1 .O to 0.1 there is a streamline leaving the wall close to the corner, the position 
of which is not changing throughout the whole of this interval. At t / T  = 0.75 there 
is a closed loop of + points which is not attached to the wall, and this simply 
represents a circulatory flow ; a t  this time the flow separates from the corner and 
almost immediately reattaches. From t /T  = 0.9 onwards the separation streamline 
proceeds across the corrugation to reattach on the downstream wall. It remains 
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FIGURE 12. For caption see facing page. 

approximately in the same position until separation ceases between tlT = 0.15 and 
0.2. When the instantaneous streamlines with the wall value of stream function are 
rapidly changing as at t/T = 0.5 one cannot surmise that they represent a separation 
streamline. 

It is remarkable that separation in unsteady flow takes place from the vicinity of 
the corner; whereas, in steady flow, separation first occurs at the apex as Reynolds 
number is increased. I n  unsteady flow, separation occurs whilst the flow near to the 
wall is accelerating. 

We have already described the radial motion of the closed-loop streamlines. Simply 
by observation of the streamlines i t  is difficult to decide whether this vorticity is 
convected towards the axis or moves by diffusion away from its source a t  the wall. 
The paths of some particles labelled at t = 0 at positions within or near to a 
corrugation are shown in figure 13. The initial and final particle positions a t  t /T = 0 
and 1 .0 are given in the figure caption in terms of the coordinate system (i,j) shown 
in figure 1 .  Almost all particles within a corrugation leave the corrugation (are 
convected out) during the period and have a radial motion not very much less than 
their axial motion. Particles outside the corrugation move almost entirely in the axial 
direction and so convection plays no part in the radial motion of vorticity in this 
region. The Strouhal number based on the mean or amplitude of the velocity at a 
particular radius is small a t  positions nearer to the axis than the corners of the 
corrugations. At these positions the particles are convected axially many diameters 
in one period. During the interval in which the closed streamlines are a t  a particular 
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FIGURE 12. Instantaneous streamlines of oscillating flow; e = 1, Re = 300, a = 10, St = 0.2122. 

radial position outside the corrugations the axial convection is small because the 
closed loops instantaneously encompass a region of zero axial velocity. The particle 
paths in figure 13 ( e )  are positioned near to the centres of the closed-loop streamlines 
at the times shown. The closed loops leave the corrugations by the mixed action of 
diffusion and convection. Their radial motion once outside the corrugations is almost 
entirely due to diffusion of vorticity. The migration downstream and upstream is the 
result of the nonlinearity of the problem and is caused by convection. 

Turning now to figure 14 we see the effect of increasing a a t  the same value of Re. 
Because Re is the same in figures 12 and 14 the details of the flows in the corrugations 
is very little different over most of the cycle being dominated by separation of the 
flow, which is dependent on Re. The differences in the corrugation flows, except near 
zero volume flow rate, may not be entirely real. The range of stream function within 
the corrugation when separation has occurred is very small and only minute changes 
in + are required to produce observable differences. The difference at t /T  = 0.8 in 
figures 12 and 14, for example, is also seen between the frames at times t /T  = 0.4 
and 0.9 in figure 16 where the patterns are identical when the computation has fully 
converged to  the final solution. 

The value of a in figure 14 is twice the value of figure 12, and so diffusion of vorticity 
is half as great as is evident at times t /T  = 0.3-0.5. When the flow rate is near to 
zero at and just after t / T  = 0.5 the streamline patterns appear very different in the 
two figures. As in oscillating flow in a cylindrical tube multiple undulations in the 
profile of the axial velocity occur a t  high a. 

We consider now the waveforms with e = 0, which correspond to a sinusoidal 
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FIGURE 13. Particle paths of figure 12. Coordinates of the starting and end points at t /T = 0 and 
t /T  = 1.0 are quoted in the system shown in figure 1 : (a) 8, 37 to 28.6, 34.9 and 10, 35 to - 16, 
32.3; (b) 8, 34 to 202.6, 27.6 and 10, 34 to -21.9, 34.45; (c) 6 ,  34 to  135.4, 30.1; ( d )  6, 35 to -22.8, 
33.4; (e) 8, 30 at t /T = 0.2 to 137.5, 29.95 and 6, 23 at t /T = 0.4 to 291.4, 23.5. 

oscillation of the volume flow rate about a zero mean value. A series of instantaneous 
streamlines is shown in figure 15 for Re = 1 0 0 , ~  = 4.12. When E = 0 the streamlines 
in consecutive half-cycles should be identical except for direction. Both halves are 
included to show that the computed differences are very small. The patterns are 
produced by running the programme until consecutive cycles are the same. This has 
to be a compromise between accuracy and computing time. When a comparison was 
made between figure 15 and the flow patterns produced with the same flow 
parameters but with E = 1 i t  was found that they were identical a t  corresponding 
times. I n  figure 16 the flow is shown a t  E = 0 for the same parameters as in figure 
12. The identity obtained in the case of figure 15 leads us to expect correspondence 
a t  t /T  = 1.0 (=  0) and a t  times in figure 16 which are less than 1.0 or more than 0 
by half as much as in figure 12. I n  this case the correspondence is only found to be 
approximate, presumably because of nonlinear effects, which are more pronounced 
at higher Reynolds numbers. In  figure 16 itself the flow patterns for t /T = 0.05-0.5 
should be the mirror images of those for t /T = 0.55-1.0 if the computing has 
converged. This is seen to  be the case except a t  t/T = 0.4 and 0.9 within the 
corrugation; here, where the velocity is low, only minute changes in $ of the order 
of 1 part in lo4 can produce the difference observed in the instantaneous streamline. 

Particle paths for this zero-mean-flow case ( E :  = 0) are shown in figure 17. As before, 
particles are convected out of the corrugation, but are convected radially by only 
very small amounts when they are away from the immediate neighbourhood of the 
corrugation. At all the positions shown radial convection produces an axial drift of 
the particle in one cycle, which in a cylindrical tube would be zero. 
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FIGURE 14. Instantaneous streamlines of oscillating flow; e = 1, Re = 300, a = 20, St = 0.8488. 
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FIGURE 15. Instantaneous streamlines of oscillating flow; E = 0,  Re = 100, 
a = 4.12. St = 0.1081. 

We are now in a position to discuss and summarize the relative effects of the flow 
parameters. It is found by comparing figure 16 with a computation at the same value 
of a but at Re = 100 rather than 300 that the rate of diffusion of the closed stream- 
lines towards the axis is the same. This is as one would expect from the physical 
significance of a in a cylindrical tube (it is proportional to the ratio of the tube 
diameter to the distance that vorticity diffuses from the wall in one period of 
oscillation). The Reynolds number governs the stages in the cycle at  which separation 
takes place and determines the convective transfer within the corrugations. The 
significance of the Strouhal number is apparent in the relative axial motions of 
particles a t  different radii. 

The practical objective of the work is to determine whether a corrugated prosthesis 
is likely to produce clotting of blood because there are stagnant regions in the flow. 
We see from the particle paths already presented that it is exceedingly difficult to 
determine whether stagnant regions exist. A large amount of computation would be 
required to map out the regions of a corrugation in which the particles do not leave 
the corrugation. The character of the waveform will determine these regions. It is 
therefore only of direct bearing on the practical problem to look at the femoral-artery 
waveform in this same geometry. Before turning our attention to the practical case, 
brief reference will be made to the sinusoidally oscillating two-dimensional flows 
studied by Sobey (1980). The regions of interest diverge more than in steady flow 
because of the different applications. Sobey concentrates on zero and small mean flow. 
He discusses separation in terms of steady-flow concepts, whereas we prefer to view 
separation as evidenced by particles moving away from the wall. Where there is zero 
mean flow the main findings are similar in the two geometries, except where the effect 
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FIGURE 16. Instantaneous streamlines of oscillating flow; E = 0, Re = 300, a = 10, St = 0.2122. 
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FIGURE 17. Particle paths of figure 15. Coordinates as in figure 12: (a) 10, 35 to 1 1 ,  33.8; ( 6 )  8, 
36 to 7.45, 35.1; (c) 6, 35 to -48.1, 31.8; (d )  0, 30 to -24.7, 28.6; ( e )  8, 31 to -59.5, 29.6. 

of the narrow central channel dominates in Sobey's case. When there is a mean flow 
the details of the two flows are different. The principal difference between the two 
cases is that with a narrow central channel mixing takes place over the whole cross 
section; in our case with corrugations which are relatively small mixing takes place 
within and bordering the corrugations. 

Oscillating flow with mean flow equal to amplitude ( E  = 1 )  has been computed for 
a single widening in an otherwise cylindrical tube by Mirolyubov (1979). The shape 
of the wall is approximately sinusoidal, the a and Re are within our range, but AID 
calculated from the maximum and minimum radii is 0.34. In  this deep hollow, 
multiple circulating regions are found and multiple separation and reattachment is 
present throughout the cycle. The vortices do not appear to leave the corrugation 
as they did in Sobey's case. This work is similar to but not comparable with the cases 
presented here. 

6. The equivalent cylindrical tube in oscillating flow 
As we did for steady flow we may consider the equivalent cylindrical tube which 

has the same volume flow rate as in the corrugated tube for the same pressure 
gradient. For the oscillating component the treatment is a little more complicated 
and approximations have to be made in order to obtain a relationship which is easily 
applied. The steady component of the flow is considered in exactly the same way as 
for steady flow in $4. For the current geometry AID = 0.1, LID = 0.2 the mean 
pressure difference and the mean-flow results are shown in table 1 for steady flow and 
for the mean component of the unidirectional oscillating flow ( E  = 1) .  The cylindrical 
tube value of Rep* is 32. The equivalent cylindrical-tube diameters obtained from 
(23) are also shown. In  this oscillating flow the Reynolds number of the mean flow 
is equal to that based on the amplitude. It appears from these results that for the 
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Re 100 200 250 300 500 700 

St,eady flow P* 0.56 0.28 0.23 0.192 0.12 0.085 
(a  = 0) Rep* 56 56 57.5 57.6 60 63.75 

Oscillating flow P* 0.645 0.31 0.2555 0.21 0.13 
(e  = 1,a = 4.12) Rep* 64.5 62 63.75 63 65 

Steady flow; mean Rep* = 58.5 giving D,/D = 0.860. 

Oscillating flow; mean Rep* = 63.65 giving D,/D = 0.842. 

TABLE 1 .  Mean-flow components of the non-dimensional pressure drop in the corrugated tube 

mean component Rep* is a function of a and even less dependent on Reynolds number 
than i t  is at a = 0. This is surprising since the flow in the corrugations appeared to 
depend more strongly on Reynolds number than on a,  but one does not see the mean 
component when viewing the instantaneous streamlines of a flow with a large 
oscillating component. 

For oscillating flow the volume flow rate values are given and the computed 
pressure values, which have been Fourier-analysed to give the mean and fundamental 
frequency components of the amplitude; higher harmonics were less than 2 yo of the 
fundamental. As for steady flow we write for the amplitude of the fundamental- 
frequency non-dimensional pressure 

@* = kD5, (25) 

where k = (16p/n2) A@/(L$") = constant by hypothesis. A@ is the amplitude of the 
fundamental component of the pressure difference across the corrugation and 0 is 
the amplitude of the oscillating volume flow rate. For the equivalent cylindrical tube 
(suffix e) having the same value of k ,  the steady flow equation p,* = 32/Re, is 
replaced by 

where f(a,) = 4az/ll -eole. Here a, is the equivalent cylindrical-tube value, which 
is 0.5De(2n/vT)4, and (l-Flole is a function of a,. ll-&o], a complicated function 
of a,  is tabulated by McDonald (1974), where i t  is called Mio. As for steady flow, 
Re, = D RelD,, Q being constant. We thus obtain 

(26)  @,* =f(ae) lRee ,  

D24a2 
Re@* = 

-&ole*  

I n  order to simplify the computation of D ,  i t  is necessary to approximate 11 -Flole. 
Between a = 3.5 and a = 20,Il -Ko1 is represented to  better than 4 % by 0.547a0.18s, 
and so 

(28) @* = 7.31a1.814Re-1 ( - ,,2.186. 

A more accurate representation in the restricted range 4 < a < 8 which gives (1  - FloI 
to better than 1 yo is 0.503a0.25. This gives 

@* = 7.95a1.75Re-l ( - 32'25. (29) 

D , / D  as calculated from (28)  and (29) is plotted in figure 18 from data computed 
a t  Re = 300 and 100 which is presented in table 2. The dashed curve represents the 
more accurate values and their extrapolation. The curves are extended to a = 0 to 
pass through 0.85 determined from steady-flow considerations. 
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FIGURE 18. The diameter of the equivalent cylindrical tube in oscillating flow. 

U 

Re = 300 
0 5 7 8 9 10 20 

Cylinder Re#* 32 132.45 239.5 305.3 377.4 460.6 1717 
Corrugated tube Re@* 57.6 146.7 246.3 293.8 359.1 422.0 1343 

(298.8) (420.2) 

U 
Corrugated tube Re$* 

Re = 100 
4.12 7.62 10.0 

119.2 274 423.8 
( 1  19.2) 

TABLE 2. The fundamental-frequency component of the non-dimensional pressure difference 
between the ends of the corrugation; values for E = 1 with E = 0 values are in brackets 

This cumbersome analysis has been made in order to obtain the equivalent 
diameter which is of use medically when a corrugated prosthesis is being chosen to 
replace a diseased artery. A direct and simple relation between Rep* and 01 which 
fits the data of table 2 is presented as (31) in $7.2. We see no dependence of D, or 
Rep* on Reynolds number, but have only investigated the two values Re = 100 and 
300. Equations (29) and (33) give D,/D = 0.87a0.0s7. 

The values in table 2 show that whether E = 0 or 1 makes little difference to the 
resulting pressure drop ; the maximum difference in @* found in the few cases where 
comparison was possible is only 1.7 o/o. 

7. Application to arterial prostheses 
Arteriosclerosis is responsible for a large proportion of the deaths in America and 

Northern Europe, and haemodynamic factors are believed to play a role in the 
formation of atheroma at certain sites within the arterial tree (Middleman 1972). 
Atheroma is encountered most frequently where flow separation can occur, as 
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FIGURE 19. Particle positions in flow oscillating with a femoral artery waveform. 
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evidenced by the work of Fry (1968) and Caro, Fitzgerald & Schroter (1971). When 
arterioscleriosis causes complete occlusion of an artery in the leg (iliac, femorals and 
popliteal), patients suffer pain on exercise and gangrene may develop. I n  these 
circumstances the only effective treatment is to bypass the obstructed artery. For 
the replacement of smaller arteries, of less than 6 mm diameter, such as the superficial 
femoral, tibia1 and coronary arteries, one of the patient’s own veins is used as a bypass. 
LaSalle et al. (1982) have shown that in general vein grafts remain patent for much 
longer periods than prostheses of similar dimensions. When no vein is available a 
prosthetic artery must be used, and many of these have corrugated walls, so that 
they remain open when bent. 

Blood tends to clot when in contact with a foreign material such as a prosthesis. 
Clotting is more likely in regions of stasis or regions of flow not washed out a t  each 
cycle of the heart beat. In  arterial prostheses of small diameter the corrugations are 
relatively large and if the effect of the corrugations is to cause local stasis this may 
promote thrombus formation. 

Whenever a main artery, for example the superficial femoral, is obstructed, a 
collateral pathway develops from small capillaries. It is essential that  the impedance 
of any prosthesis used as a bypass is less than that of the collateral pathway: hence 
it is necessary to know how corrugations affect the resistance of artificial arteries. 
Additionally the resistance of the prosthesis is difficult to match to the adjoining 
vessels when the diameter is small, and as with a stenosis the presence of the collateral 
circulation may result in a slower flow if the resistance is too high. 

In  view of these facts it has seemed reasonable to consider the fluid mechanics of 
a corrugated tube with this application in mind. The aim was to investigate the 
possible occurrence of stagnant regions in the corrugations and to determine the 
pressure drop required to  produce a given volume flow rate. The flow waveform was 
that of a normal human superficial femoral artery. 

6 F L M  138 
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1 -25.02, 36.17 33 44.26, 27.56 
2 -38.51, 34.85 34 109.23, 34.56 
3 5.29, 33.17 35 72.43, 30.16 
4 98.2, 31.2 36 40.3, 38.5 
5 110.5, 30.8 37 15.02, 31.99 
6 210.3, 31.95 38 4.87, 31.33 
7 281.23, 37.08 39 -41.57, 35.3 
8 286.31, 30.51 40 -26.5, 30.2 
9 421.45, 32.58 41 -66.6, 26.8 

10 457.73, 31.16 42 6.86, 38.14 
11 543.19, 34.19 43 8.62, 36.88 
12 485.64, 32.99 44 58.9, 36.47 
13 460.79, 32.65 45 75.43, 36.32 
14 248.46, 33.21 46 27.42, 33.54 
15 79.36, 30.5 47 -8.34, 33.65 
16 -65.45, 29.41 48 - 101.00, 29.34 
17 -69.74, 30.93 49 9.64, 33.87 

19 21.1, 33.1 51 55.45, 34.30 
18 -59.61, 32.50 50 -57.15. 35.4 

20 108.2, 35.2 52 -83.58, 31.4 
21 135.6, 33.75 53 - 12.79, 32.84 
22 143.8, 30.7 54 3.39, 35.05 
23 141.94, 34.9 55 25.08, 38.42 
24 136.58, 37.4 56 14.17, 32.22 

26 296.9, 34.56 58 8.35, 34.24 
27 89.33, 36.42 59 47.91, 30.83 

29 -25.5, 36.17 61 13.1, 33.06 
30 7.28, 32.76 62 12.8, 32.73 

25 290.8, 32.2 57 - 1.97, 30.83 

28 -23.76, 30.6 60 -12.38, 35.22 

31 6.56, 38.03 63 -86.32, 35.32 
32 -89.67, 29.32 

TABLE 3. Coordinates of the particles initially a t  the positions shown in figure 19 after one period 
of oscillation of the femoral artery waveform. Coordinate system of figure 1. 

7. I .  Computation of the particlp paths 

I n  the numerical analysis it was necessary only to replace the sinusoidally oscillating 
volume flow rate Q by a superfical femoral artery waveform. The flow waveform was 
taken from the determination in a normal human artery by Dedichen & Kordt (1974). 
This was Fourier-analysed to determine the mean and the first six harmonics, and 
these are quoted in table 4. The period of the wave was 1 .0 s, the mean Q was 1.6 ml/s, 
the maximum Q was 12.3 ml/s, and the minimum Q was - 2.6 ml/s. The geometry of 
the corrugated tube was as before, L I D  = 0.2, AID = 0.1. To obtain the Reynolds 
numbers i t  was assumed that the diameter D was 5 mm and the kinematic viscosity 
4 mm2/s. The flow was expressed in terms of the value of the stream function a t  the 
wall and the value of this at each time step was determined from a Fourier synthesis. 
The instantaneous streamlines computed were as would be expected from the results 
already presented. Particle paths were determined for fluid particles initially a t  each 
of the 64 mesh intersections in one corrugation. The initial positions of the particles 
are numbered from 1 to 64 in figure 19. The particle positions after one period are 
listed in table 3. The particles which at the end of the period remained in the 
corrugation which they initially occupied are marked in the figure. Two particles 
remain in the corrugation throughout the period. The other 10 marked particles leave 
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the corrugation during the cycle and return to  the positions indicated. All but one 
of these particles go into the adjoining corrugation, particle 30 goes into the next 
corrugation but one before returning. One notices that these particles will leave the 
corrugation in the next cycle or the next cycle after that. 

The particles were placed a t  the mesh intersections. It is evident that  the mesh 
is coarse and that particles at adjacent mesh points are convected to widely different 
final positions. Since the computing time required for a smaller mesh would be 
prohibitively long, the results as presented are the best that  we can achieve, but have 
the possibility of error in the fine scale. The results suggest that the mixing of fluid 
near to the wall is more energetic than in the case of a cylindrical tube and that there 
is no indication of any stagnant regions forming on a timescale of the size of a period 
of the oscillation. It appears that corrugated prostheses will not fail because of 
stagnant pockets of fluid in the corrugations. 

The particle number 64 has been omitted from table 3. The numerical analysis is 
such that this particle does not migrate. This region was investigated by truncating 
the corrugation at ordinate 39 and inserting particles at coordinates 7.5, 38.5 and 
8.5, 38.5. These particles were washed away and the rest of the particles executed 
essentially the same paths as before. 

7.2. The non-dimensional pressure difference between the ends of the corrugation 

As with sinusoidally oscillating flow, the non-dimensional pressure gradient $* was 
determined for the femoral-artery waveform. The resulting values were Fourier- 
analysed to  give the components shown in table 4. The non-dimensional pressures 
shown are based on the different peak velocities of each harmonic component. The 
Reynolds numbers are based on the same velocities and the diameter D .  The values 
of $* were also computed on the assumption that the Fourier components were 
present alone, that  is, without the nonlinear interactions which are present. This 
computation may be made using (29). Alternatively, without recourse to the 
equivalent diameter, we may directly analyse the values of table 2 to give 

Re$* = 58+ 3.56a2.02 (4 < a 6 20). 

This equation is accurate to within 2.5 yo. With very little extra inaccuracy we may 
also write 

Re$* = 10.86a1.6. 

From the results in table 4 we see that the pressure gradient that produces the given 
flux in the composite femoral wave is within about 10 Yo, in all cases, of the value 
obtained when the components are present alone. I n  the case of a sinusoidal 
oscillation the values of Re$* for the corrugated tube lie above those of the equivalent 
cylindrical tube when a < 7.6 ; above this a the cylindrical tube values are the greater. 
It happens, presumably fortuitously, that the Re@* values for the components of the 
femoral waveform lie almost exactly on the cylindrical-tube curve, with the exception 
of the fundamental component, which lies midway between the cylindrical- and 
corrugated-tube curves. The nonlinear effects of the corrugation and of the composite 
waveform happen to be equal and opposite. The value of the product of the mean 
values Re p* was found to be 58.0, which is close to  the steady-flow value quoted in 
table 1.  The corresponding equivalent diameter divided by the maximum diameter 
calculated from (23) is thus 0.861. 

_- 

6-2 
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$* from (31) for 
Frequency Q amplitude harmonic components 

(Hz) a ( m b )  Re $* present separately 

1 3.76 3.04 161.7 0.600 0.68 
2 5.31 3.24 171.7 0.871 0.94 
3 6.51 2.57 136.2 1.506 1.575 
4 7.52 1.14 60.6 4.380 4.42 
5 8.40 0.60 31.8 10.44 10.06 
6 9.21 0.39 20.75 19.17 18.01 

TABLE 4. The non-dimensional pressure difference across the corrugation. Superficial femoral artery 
waveform. Mean volume flow rate = 1.57 ml/s, mean Reynolds number = 100. 

7.3. Conclusions 

The results of this work on the application to corrugated prosthetic arteries are 
negative. There appears to be no fluid-mechanical reason why corrugated tubes 
should perform worse than prostheses with a uniform diameter or even the patient’s 
own veins. Figliola & Mueller (1981) show that regions of slowly moving separated 
flow correlate with clinical findings of thrombus formation, and also that separations 
that wash out a t  each cycle seem not to produce these adverse effects. Compared with 
cylindrical tubes there is increased mixing in the wall region of corrugated tubes. 
There is no indication of the formation of stagnant regions in the corrugations when 
a normal arterial waveform is considered. It is, however, well known that the 
waveforms in atherosclerotic arteries are far from normal, even after a bypass graft 
operation. 

The non-dimensional pressure differences found from the femoral-artery waveform 
analysis are less than 10% different from the values calculated when the harmonic 
components are present alone. The decrease of resistance with frequency a is shown 
by the 25 yo increase in De/D up to a = 20 in figure 18. The resistance of the cylindrical 
tube increases by a large factor as a increases, owing principally to  inertia effects. 
McDonald (1974) shows in his figure 6.5 that  the flux for a given pressure gradient 
drops by a factor of ten between a = 0 and CL = 10. Frictional effects produce wave 
attenuation, but the magnitude of this in a short length of normal artery is very small. 
It is unlikely that the small differences in frictional effects that we have determined 
will have a noticeable effect on the flux. 

It must be stated that mismatching of the diameter will produce much larger effects 
on the resistance of the tube. The pressure gradient for a given flux depends on a 
high power of the diameter; the fourth power in steady flow (23) and the 2.25 power 
in oscillating flow (29). 

8. General conclusions 
The flow in a corrugated tube has been investigated for steady and oscillating flows 

of different waveforms. I n  all cases instantaneous streamlines and particle paths have 
been calculated and a study made of the effect of the variation of the parameters 
of the problem. 

I n  steady flow the geometry ( L I D  and AID)  was varied as well as the Reynolds 
number. The most striking feature of the flow is the onset and growth of separation. 
There is no separation when L I D  is large and AID and Reynolds number are small. 
As these parameters are changed to produce separation, this always occurs first a t  



Flow through a corrugated tube 159 

the apex of the corrugation. The parameters interact so that, for example, the critical 
L I D  for separation increases as either Re or AID increase. Separation was found to 
occur a t  zero Reynolds number for small-enough L I D  and large-enough AID. 

I n  unsteady flow the non-dimensional frequency a or St enters as well as the ratio 
E of the mean of the flux to its amplitude. Calculation of these flows was restricted 
to one pair of values of AID and LID. The flux ratio E was found to have only a 
small effect, except on the timescale and thus on the diffusion of vorticity from the 
wall. Regions of quasi-steady separation a t  maximum flux were found. The separation 
was in these cases a t  or near to the corner rather than a t  the apex of the corrugation. 
The results showed enhanced mixing due to convection in the radial direction within 
and adjacent to the corrugations. It was found that the flow patterns were 
characterized in the corrugation by the Reynolds number and in the central flow by 
the Stokes number a. 

The occurrence of persistent stagnation regions in the corrugation was investigated 
for an arterial waveform, and i t  was concluded that such regions do not exist in the 
geometry considered and the waveform studied. If there remains a fluid-mechanical 
reason why the failure rate of corrugated prostheses is higher than that of cylindrical 
tubes i t  may be that the waveform of the oscillations departs from the normal. I n  
the cases that we have considered the mixing in the wall region was enhanced by the 
presence of the corrugations. 

The resistance of the tubes was related to that of a cylindrical tube. One would 
expect increased mixing to increase the resistance. I n  steady flow the resistance is 
a function only of the product of Reynolds number and non-dimensional pressure 
difference which in turn depends mainly on AID. The resistance increases as AID 
increases, as one would expect. Resistance also increases with increasing Reynolds 
number and with decreasing LID. In  the range we have studied the latter effect is 
small. Some computations made to compare with the results of Deiber & Schowalter 
(1979) have shown large effects when LID is greater than 1.  Comparison with these 
results obtained for a sinusoidally varying tube radius shows that the difference in 
geometry produces very small changes in the non-dimensional pressure drop at the 
same LID and AID. The A in AID is equated to twice the amplitude of the variation 
of the tube radius. This equivalence may well not hold for small values of LID.  I n  
oscillating flow the resistance compared with that of a cylindrical tube decreases as 
CL increases; the change is about 30% from a = 0 to a = 20. The resistance of a 
cylindrical tube has a very much stronger increase with frequency due to inertia 
effects. The changes in resistance due to the corrugations are small compared with 
the total resistance to the flow. 

We had hoped that a fuller investigation of unsteady separation would have been 
possible. I n  general one can see that the instantaneous streamlines and the particle 
paths give the same impression of the flow. When there is an instantaneous streamline 
springing from the wall having a stream-function value equal to  the wall value, this 
would be a separation streamline in steady flow. To investigate the unsteady 
separation i t  would be necessary to follow the paths of a large number of particles 
and employ a fine mesh in this region. This is not possible in the present work, where 
a large field has to be covered a t  the same time as investigating the fine detail. 
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